
Theor Chim Acta (1991) 79:175-182 Theoretica
Chimica Acta
© Springer-Verlag 1991

Massively parallel high-energy time-dependent
wave-packet calculations

David Chasman 1, Robert J. Silbey 1, and Michael Eisenberg 2
1Department of Chemistry and 2Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, MA 01239, USA

Received September 1, 1990/Accepted November 13, 1990

Summary. The exact solution of the time-dependent Schr6dinger equation is
obtained using a parallel implementation of the standard grid techniques. Most
of the operations involved in this calculation may be executed concurrently for
each of the grid points. For the few operations which may not be executed
concurrently, we have implemented parallel algorithms. In our two-dimensional
implementation on the Connection Machine, we have obtained optimal speed-
up - that is, by using N processors we achieve a speed-up which is proportional
to N. In addition to the discussion of our 2-dimensional implementation,
we shall discuss our proposed 3-dimensional implementation of these grid
techniques.

Key words: Wave packets - Quantum dynamics - Parallel computing

1. Introduction

The use of grid techniques for the solution of the time-dependent Schrrdinger
equation (TDSE) in 2 dimensions has become commonplace in the physical che-
mistry community. The usual alternative approach is the eigenvalue/eigenvector
approach which requires a converged basis set calculation followed by the
expansion of the initial wave-packet in the eigenstates of the Hamiltonian. Since
the eigenvalue/eigenvector calculation scales as N 3 (N is the basis size) it is often
prohibitive when a large basis set is necessary [1] as is the case when the problem
being considered has a high density of states. It is in this case that grid
techniques are preferred. Examples include vibrational dynamics on dissociative
electronic surfaces [2] and high energy dynamics on bound surfaces [3]. Although
grid techniques allow us to avoid the difficulty of a large matrix diagonalization,
they are difficult to apply to large amplitude 3-dimensional problems because of
their prohibitive running times on conventional computers. Fortunately, wave-
packet propagation, using grid techniques, seems to have been custom tailored to
the architecture of the Connection Machine (CM). In this paper, we present an
optimal implementation of wave-packet propagation schemes - that is, by using
N processors, our speed-up is proportional to N.

176 D. Chasman et al.

Although the switching devices in serial computers may become faster and
faster, the speed of serial computers will ultimately be limited by the speed of
switching devices. However, given the same switching devices, a massively
parallel machine will always outperform the serial computer by a factor propor-
tional to the number of processors - provided that efficient parallel algorithms
are used. As we tackle larger and larger problems we have no choice but to
implement our current algorithms in parallel and to discover new parallel
algorithms.

2. The Connection Machine - a number cruncher's view

The Connection Machine (CM) may be viewed as an array of 8-64 K processors
which concurrently execute commands which are issued by a front end computer.
Each of these processors has 64, 128, or 256 K bits of memory and executes a
normal sort of instruction set, albeit more slowly than high speed serial comput-
ers. In addition to the normal instruction set, there is facility for 12-dimensional
inter-processor communication. There are 2 configurations for inter-processor
communication - news (North East West South) and send. The news configura-
tion is optimized for nearest-neighbor communication and the send configuration
is optimized for processors which are 1, 2, 4, 8, 1 6 . . . 2 N distant from each other
on the computational grid. What the current generation of Connection Machines
may lack in processor speed is compensated for by its parallelism and inter-pro-
cessor communication facilities.

3. Computational procedure

The standard wave-packet propagation techniques can be most easily viewed as
two completely separate operations:

1. Evaluation of the Hamiltonian
(a) Second-order differencing
(b) Fourier transform

2. Expansion of the propagator
(a) Second-order differencing
(b) Chebeychev expansion

In any implementation of these techniques, the user selects one item from
each section of this Chinese m e n u - repeating choices (1) and (2) until the
solution at the desired time is obtained. Although any combination of selections
may be used - those who savor precision usually select lb and 2b - as this gives
the most exact results [4].

Here, we review the algorithms which we use, compare the number of
machine cycles required on a serial and parallel machines, and examine their
suitability for parallelization. The most important consideration for the paral-
lelization of any operation is whether it may be executed independently for each
point on the grid. Any operation which may be executed independently for each
grid point is trivially paralielizeable. Operations which cannot be executed
independently for each grid point are not intrinsically parallelizeable and a
non-trivial parallel algorithm must be used to obtain optimal speed-up. An

Parallel high-energy time-dependent wave-packet calculations 177

algorithm is optimal if the speed-up with N processors is directly proportional to
N. In this disucssion, the calculations take place on an Ng = Na x Na grid. There
are a total of Np - P x P available processors.

3. I. Evaluation o f the Hamiltonian

The Hamiltonian:

/~0(x, t) = ~ + V 0(x, t) (1)

is the sum of the kinetic and the potential energies. The potential energy term is
evaluated by simple multiplication, that is:

VO(x, t) = V(x) . O(x , t) (2)

This requires a single multiplication at each grid point. This operation may of
course be executed independently for each grid point.

3.2. Evaluation of the kinetic energy operator

The kinetic energy operator may be evaluated by using either a finite difference
scheme or the fourier transform method. The latter of these two techniques is
preferred for two reasons. First, the commutation relations of quantum-mechan-
ics are preserved in the grid representation. Second, this technique is exact for
band limited functions with a fimte number of components.

3.2.1. Evaluation of kinetic energy operator using finite difference scheme. The
expression for the kinetic energy operator 1 using the standard finite difference
scheme is:

~,, - ~ , , - , 0 , + 1 - ~,,
l l 2Oi - - 0 i+1 - - O i - 1

i f (x ,) - l = 12 (3)

where l is the distance between grid points. This requires 6Ng operations - which
of course depend on the neighboring grid points - this sort of communication is
appropriate to the news CM configuration.

3.2.2. Evaluation of kinetic energy operator using the Fourier method. The pre-
ferred technique for evaluating the kinetic energy term is the Fourier transform
technique. We recall that:

F T (f(")(x)) = (-- ik)"FT(f (x)) (4)

where F T (f (x)) indicates the Fourier transform of f (x) . Thus, in order to
evaluate the kinetic energy operator, we simply take the Fourier transform,
multiply by - k 2, and take the inverse Fourier transform. That is:

Vz~//(x) = F T - 1(_ k zrT(O(x)) (5)

In order to speed this process, a Fast Fourier Transform (FFT) is used.

This is for the 1-dimensional case - the extension to higher dimensions is clear

178 D. Chasman et al.

The Fourier transform:

N - 1

~j : ~, oY~z, w h e r e CO n : e i2n[N
n = 0

(6)

may broken into two

^

Z j , =

)arts, and rearranged into an odd and even series [5]:

N/2- 1

Z COffvl2(Zn -[-Z(n+NI2)) j--even
n = 0

N I 2 - 1
~_. " 2j ' (DINI2(DN + I (z n - - Z(n+ N/2)) j - - odd

n=O

(7)

which we recognize as two separate Fourier transforms - that of (Z n ~-Z(n + N/2))
and that of ogg'+~(z,-z(,+N/2)) of size N/2. At the first step of the FFT, the
indices are split by the value of their lowest order bit. At each successive step of
the transform, we again split the indices depending on the next lowest order bit.
This process has the effect of obtaining the output in "bit-reverse ''2 order relative
to the input. The data-flow for this algorithm is diagrammed in Fig. 1 which
corresponds to the familiar butterfly. When cells of the butterfly are re-used on
successive levels- this network has the topology of a Boolean n-cube
(n = log2 N). This is the topology of the CM [6].

It is clear that if we are doing an N point FFT and N is a power of 2 there
will be log2 N steps each of which involves 2 complex additions and N/2 complex
multiplications. This gives us a total operation count of 5N log2 N. Because the
FFT may be balanced evenly between all N processors, the FFT requires only
5 log2 N cycles. Thus, the implementation of the FFT for powers of 2 is optimal.
On the CM, all of the x-rows of a given axis may be transformed simultaneously.
Thus, a 2-D FFT requires only 2(5 log2 N) cycles on the CM. For a more

2 That is, the bits of the index in the output are the reverse of the bit ordering in the input. For
example if we are computing FFT of an 8 point array the first (001 binary) element of the input will
correspond to the fourth (100 binary) element of the output

x (o)

x (1)

x (2)

x (3)

x (4)

x (s)

x (6)

x (T)

x (8) ,,,

x (g)

x (l o)

x(ll)

X(12)

X(13)

x (1 4)

x (1 5)

\ \ \ V / /
\ \ \ X X / /
\XX'XXX/

XXXSOO(X

/ / / X X X \
/ / / / x \ \
/ / /

+ + + +
X(O)

~ + X) ¢ - + x<4,
'+ \ ~ / + / " ¢ ~ - x . 2 >

'.+ X X X ' X - + + x(2~

+ ~ : \ 7 ~ > ~ x~lo~
'+ / A " . - " > ~ - + x<~,
'+ • Y - / " ¢ >¢- x<.)
' - + + " + \ I t)

;- \ / + \ I + ~ - ~<,)
\ \ / , # + k"A~ - + x<,)

:- 'OCXI+ / ' ~ - "~- x<,~)
"- ~ - + "+
L X (3)

i- / A Y - "X"X- "+ ~<,~) ~- / ",~- /"..~- >¢: ,<<,,> Fig. 1. Data flow for
parallel FFT

Parallel high-energy time-dependent wave-packet calculations 179

detailed description of the implementation of the FFT on the CM, we refer the
reader to Refs. [5] and [7].

3.3. Integration in time

3.3.1. Second-order differencing in time. This formula is most easily obtained as
follows. First, we write the time derivative using the second-order difference
formula:

t3~k ff(t + A t) -- ff(t -- A t)
(8)

Ot 2At

By rearranging this equation and substituting - i l i ~ / h for Otp/Ot we obtain:

2iA tI4~b
~b(t + At) ,~ ~k(t -- At) h (9)

Advancing the time using this second-order differencing scheme requires 2Ng
operations once /-/ff has been evaluated. These operations may be executed
independently for each grid point.

3.3.2. Expansion o f propagator in the Chebeychev polynomials. The integration in
time is done by expanding the propagator e -ih't in the Chebeychev polynomials:

(10)

where R is a constant which is determined from the potential of the Hamiltonian
as well as the spacing of the grid points (and therefore the maximum wave-
vector) being used for the integration and:

~i ei~X~,(x)
an[°~] = J--i ax [1 -- x 2] 1/2 = 2Jn(ct) (11)

The Chebeychev polynomials t~n(A)) are related by the recurrence relation:

~b,(X ~) = 2.~q~,_ I(X ~) + q~,_ 2 (Y~ ~)

Thus, in order to evaluate Eq. (10), we need only retain the value of the two
previous Chebeychev polynomials at each grid point. This means that memory
demand does not increase as a function of the number of terms in the Chebey-
chev expansion. This thrifty use of memory is important because the processors
in the current generation of massively parallel computers have limited memory.
The Chebeychev expansion of the propagator requires 2NgNc operations in
addition to Arc Hamiltonian operations to evaluate the terms of Eq. (10) using
Eq. (12). This technique of integration in time is very precise in comparison with
other schemes 3 because the Chebeychev polynomials are exponentially conver-
gent on any finite interval [4].

3 For example, finite differencing in time.

180 D. Chasman et al.

"i

A(1,1NZ A (3,1 ,NZ)

A(I,NY, I)

/ i -E
~X,l~i AIN.KI,1)

Fig. 2. CM layout for 3-D
implementation. P(i,j)
Processor grid; A(i,j, k)
3-D data array; N J(, NY,
N2 axis-dimensions. Off
processor axis - - - - - - , on
processor axis

3.4. 3-D implementation considerations

Although there is little conceptual difference between the 2-D and the 3-D
implementation of these techniques, there is a physical constraint of the current
generation of CMs which is relevant. That is, there are at most 216= 65536
processors in each machine. This means that if we wish to work on a
128 x 128 x 128 = 221 grid - it is impossible to allocate one processor to each
grid point. In our 3-D implementation, which is in progress, one dimension of
the grid is on processor and the other two dimensions are formed by the
processor grid - as illustrated in Fig. 2. In this figure, the X and Y axes form
processor grid Pi: and the array elements Ai:k reside on the processor P~: Vk.
Because there is not an array of processors along the serial Z - a x i s - it might
seem that the kinetic energy calculation will scale as n (finite differences) or
N log2 N (FFT). However, since the calculations along the Z-axis are executed
concurrently for all values of X and Y, we are again able to evenly distribute the
Z-axis operations among all of the processors. In addition, all Z-axis operations
are done on a part of the grid which is local to a single processor. This yields an
additional speedup by avoiding inter-processor communication. Thus, not only
are the 3-D implementations of these algorithms still optimal but our " lack" of
processors is somewhat compensated for by this on-processor/off-processor
speed trade-off.

4. Conclusions

In summary, almost every computational step of these grid algorithms may be
executed concurrently for each grid site. Those steps which cannot be executed
concurrently are implemented using optimal parallel algorithms. The speedup for
massively parallel over serial is proportional to the number of processors for any

Parallel high-energy time-dependent wave-packet calculations

Table 1. Table of computational requirements: 2D implementation

181

Estimate of machine cycles used in the various propagation schemes - 2D

Hamiltonian $ Time--, Second-Order Difference Chebeychev expansion

Fourier transform Serial 5Ng + 20N~ log 2 N a 5NcNg + 20NcN] log2N a

Parallel 5 - g + 20 log 2 Na 5N c + 20N c log 2 Na Np

Finite difference Serial 8Ng 8NcNg

Parallel 8 Ng 8N~ Ng
N, N~

Ua
U~ (=Uo × Uo)
P

NI, (=P x P)
Nc

Number of grid points per axis
Number of total points on grid
Number of processors per axis
Total number of processors
Number of terms in Chebeychev expansion

Table 2. Table of computational requirements: Projected 3D implementation

Estimate of machine cycles used in the various propagation schemes - 3D

Hamiltonian ~, Time ~ Second-Order Difference Chebeychev expansion

Fourier transform Serial 5Ng + 30N 3 log 2 N,~ 5NcNg + 30N~N 3 log 2 N a

Ng Ng
Parallel 5 Np-- + 30N~ log 2 Na 5N~ ~ + 30NcN,, log 2 N a

Serial 8Ng 8NcNg

Parallel 8 Ng 8Ne Ng
Up Np

Finite difference

U~
Xe (=N. x No)
P
% (=.e xp)
Nc

Number of grid points per axis
Number of total points on grid
Number of processors per axis
Total number of processors
Number of terms in Chebeychev expansion

combination of techniques reviewed in this section. The comparison is summa-
rized in Tables 1 and 2 for the 2-D and the 3-D case, respectively. To reiterate,
although the solution of the 2-D TDSE has become routine, this work lays the
groundwork for making the solution of the 3-D TDSE routine by using the
massively parallel architectures as they emerge.

Acknowledgements. The authors wish to thank the NSF for partial support and Thinking Machines
Corporation for computer time and expertise. In particular, we wish to thank Adam Greenberg,
J. P. Massar, Alan Mainwaring, and Doug MacDonald of Thinking Machines for helpful discus-
sions.

182 D. Chasman et al.

References

1. Kosloff R (1988) J Phys Chem 92(8):2087
2. Chasman D, Tannor DJ, Imre D (1988) J Chem Phys 89(11):6667
3. Chasman D, Silbey J, Eisenberg M (1990) Chem Phys Lett 175(6):633
4. Gerber RB, Kosloff R, Berman M (1986) Molecular scattering from surfaces. Computer Physics

Reports 5(2):59
5. Johnsson SL, Krawitz L, Frye R, MacDonald D (1989) Cooley-Tukey FFT on the connection

machine. Technical Report NA89-4 Thinking Machines Corporation
6. Hitlis WD (1985) The connection machine. MIT Press, Cambridge, Massachusets, ACM Distin-

guished Dissertation.
7. Conte SD, deBoor C (1980) Elementary numerical analysis. McGraw-Hill, New York

