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Summary. The exact solution of the time-dependent Schr6dinger equation is 
obtained using a parallel implementation of the standard grid techniques. Most 
of the operations involved in this calculation may be executed concurrently for 
each of the grid points. For the few operations which may not be executed 
concurrently, we have implemented parallel algorithms. In our two-dimensional 
implementation on the Connection Machine, we have obtained optimal speed- 
up - that is, by using N processors we achieve a speed-up which is proportional 
to N. In addition to the discussion of our 2-dimensional implementation, 
we shall discuss our proposed 3-dimensional implementation of these grid 
techniques. 
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1. Introduction 

The use of grid techniques for the solution of the time-dependent Schrrdinger 
equation (TDSE) in 2 dimensions has become commonplace in the physical che- 
mistry community. The usual alternative approach is the eigenvalue/eigenvector 
approach which requires a converged basis set calculation followed by the 
expansion of the initial wave-packet in the eigenstates of the Hamiltonian. Since 
the eigenvalue/eigenvector calculation scales as N 3 (N is the basis size) it is often 
prohibitive when a large basis set is necessary [1] as is the case when the problem 
being considered has a high density of states. It is in this case that grid 
techniques are preferred. Examples include vibrational dynamics on dissociative 
electronic surfaces [2] and high energy dynamics on bound surfaces [3]. Although 
grid techniques allow us to avoid the difficulty of a large matrix diagonalization, 
they are difficult to apply to large amplitude 3-dimensional problems because of 
their prohibitive running times on conventional computers. Fortunately, wave- 
packet propagation, using grid techniques, seems to have been custom tailored to 
the architecture of the Connection Machine (CM). In this paper, we present an 
optimal implementation of wave-packet propagation schemes - that is, by using 
N processors, our speed-up is proportional to N. 
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Although the switching devices in serial computers may become faster and 
faster, the speed of serial computers will ultimately be limited by the speed of 
switching devices. However, given the same switching devices, a massively 
parallel machine will always outperform the serial computer by a factor propor- 
tional to the number of processors - provided that efficient parallel algorithms 
are used. As we tackle larger and larger problems we have no choice but to 
implement our current algorithms in parallel and to discover new parallel 
algorithms. 

2. The Connection Machine - a number cruncher's view 

The Connection Machine (CM) may be viewed as an array of 8-64 K processors 
which concurrently execute commands which are issued by a front end computer. 
Each of these processors has 64, 128, or 256 K bits of memory and executes a 
normal sort of instruction set, albeit more slowly than high speed serial comput- 
ers. In addition to the normal instruction set, there is facility for 12-dimensional 
inter-processor communication. There are 2 configurations for inter-processor 
communication - news (North East West South) and send. The news configura- 
tion is optimized for nearest-neighbor communication and the send configuration 
is optimized for processors which are 1, 2, 4, 8, 1 6 . . .  2 N distant from each other 
on the computational grid. What the current generation of Connection Machines 
may lack in processor speed is compensated for by its parallelism and inter-pro- 
cessor communication facilities. 

3. Computational procedure 

The standard wave-packet propagation techniques can be most easily viewed as 
two completely separate operations: 

1. Evaluation of the Hamiltonian 
(a) Second-order differencing 
(b) Fourier transform 

2. Expansion of the propagator 
(a) Second-order differencing 
(b) Chebeychev expansion 

In any implementation of these techniques, the user selects one item from 
each section of this Chinese m e n u -  repeating choices (1) and (2) until the 
solution at the desired time is obtained. Although any combination of selections 
may be used - those who savor precision usually select lb and 2b - as this gives 
the most exact results [4]. 

Here, we review the algorithms which we use, compare the number of 
machine cycles required on a serial and parallel machines, and examine their 
suitability for parallelization. The most important consideration for the paral- 
lelization of any operation is whether it may be executed independently for each 
point on the grid. Any operation which may be executed independently for each 
grid point is trivially paralielizeable. Operations which cannot be executed 
independently for each grid point are not intrinsically parallelizeable and a 
non-trivial parallel algorithm must be used to obtain optimal speed-up. An 
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algorithm is optimal if the speed-up with N processors is directly proportional to 
N. In this disucssion, the calculations take place on an Ng = Na x Na grid. There 
are a total of Np - P x P available processors. 

3. I. Evaluation o f  the Hamiltonian 

The Hamiltonian: 

/~0(x, t) = ~ + V 0(x, t) (1) 

is the sum of the kinetic and the potential energies. The potential energy term is 
evaluated by simple multiplication, that is: 

VO(x, t) = V(x) . O(x , t) (2) 

This requires a single multiplication at each grid point. This operation may of 
course be executed independently for each grid point. 

3.2. Evaluation of  the kinetic energy operator 

The kinetic energy operator may be evaluated by using either a finite difference 
scheme or the fourier transform method. The latter of these two techniques is 
preferred for two reasons. First, the commutation relations of quantum-mechan- 
ics are preserved in the grid representation. Second, this technique is exact for 
band limited functions with a fimte number of components. 

3.2.1. Evaluation of  kinetic energy operator using finite difference scheme. The 
expression for the kinetic energy operator 1 using the standard finite difference 
scheme is: 

~,, - ~ , , - ,  0 , + 1  - ~,, 
l l 2Oi - -  0 i+1  - -  O i - 1  

i f ( x , )  - l = 12 (3) 

where l is the distance between grid points. This requires 6Ng operations - which 
of course depend on the neighboring grid points - this sort of communication is 
appropriate to the news CM configuration. 

3.2.2. Evaluation of  kinetic energy operator using the Fourier method. The pre- 
ferred technique for evaluating the kinetic energy term is the Fourier transform 
technique. We recall that: 

F T (  f(")(x)) = ( -- ik)"FT(  f (x)) (4) 

where F T ( f ( x ) )  indicates the Fourier transform of f ( x ) .  Thus, in order to 
evaluate the kinetic energy operator, we simply take the Fourier transform, 
multiply by - k  2, and take the inverse Fourier transform. That is: 

Vz~//(x) = F T -  1( _ k zrT(  O( x) ) (5) 

In order to speed this process, a Fast Fourier Transform (FFT) is used. 

This is for the 1-dimensional case - the extension to higher dimensions is clear 
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The Fourier transform: 

N - 1  

~j : ~, oY~z,  w h e r e  CO n : e i2n[N 
n = 0  

(6) 

may broken into two 

^ 

Z j , =  

)arts, and rearranged into an odd and even series [5]: 

N/2-  1 

Z COffvl2(Zn -[-Z(n+NI2)) j--even 
n = 0  

N I 2 -  1 
~_. " 2j ' (DINI2(DN + I ( z  n - -  Z(n+ N/2)) j - -  odd 

n=O 

(7) 

which we recognize as two separate Fourier transforms - that of (Z  n ~-Z(n + N/2)) 
and that of ogg'+~(z,-z(,+N/2)) of size N/2. At the first step of the FFT, the 
indices are split by the value of their lowest order bit. At each successive step of 
the transform, we again split the indices depending on the next lowest order bit. 
This process has the effect of obtaining the output in "bit-reverse ''2 order relative 
to the input. The data-flow for this algorithm is diagrammed in Fig. 1 which 
corresponds to the familiar butterfly. When cells of the butterfly are re-used on 
successive levels-  this network has the topology of a Boolean n-cube 
(n = log2 N). This is the topology of the CM [6]. 

It is clear that if we are doing an N point FFT and N is a power of 2 there 
will be log2 N steps each of which involves 2 complex additions and N/2 complex 
multiplications. This gives us a total operation count of 5N log2 N. Because the 
FFT may be balanced evenly between all N processors, the FFT requires only 
5 log2 N cycles. Thus, the implementation of the FFT for powers of 2 is optimal. 
On the CM, all of the x-rows of a given axis may be transformed simultaneously. 
Thus, a 2-D FFT requires only 2(5 log2 N) cycles on the CM. For a more 

2 That is, the bits of the index in the output are the reverse of the bit ordering in the input. For 
example if we are computing FFT of an 8 point array the first (001 binary) element of the input will 
correspond to the fourth (100 binary) element of the output 
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detailed description of the implementation of the FFT on the CM, we refer the 
reader to Refs. [5] and [7]. 

3.3. Integration in time 

3.3.1. Second-order differencing in time. This formula is most easily obtained as 
follows. First, we write the time derivative using the second-order difference 
formula: 

t3~k ff(t + A t) -- ff(t -- A t) 
(8) 

Ot 2At 

By rearranging this equation and substituting - i l i ~ / h  for Otp/Ot we obtain: 

2iA tI4~b 
~b(t + At) ,~ ~k(t -- At) h (9) 

Advancing the time using this second-order differencing scheme requires 2Ng 
operations once /-/ff has been evaluated. These operations may be executed 
independently for each grid point. 

3.3.2. Expansion o f  propagator in the Chebeychev polynomials. The integration in 
time is done by expanding the propagator e -ih't in the Chebeychev polynomials: 

(10) 

where R is a constant which is determined from the potential of the Hamiltonian 
as well as the spacing of the grid points (and therefore the maximum wave- 
vector) being used for the integration and: 

~i ei~X~,(x) 
an[°~] = J--i ax [ 1 -- x 2] 1/2 = 2Jn(ct) (11) 

The Chebeychev polynomials t~n(A )) are related by the recurrence relation: 

~b,(X ~) = 2.~q~,_ I(X ~) + q~,_ 2 (Y~ ~) 

Thus, in order to evaluate Eq. (10), we need only retain the value of the two 
previous Chebeychev polynomials at each grid point. This means that memory 
demand does not increase as a function of the number of terms in the Chebey- 
chev expansion. This thrifty use of memory is important because the processors 
in the current generation of massively parallel computers have limited memory. 
The Chebeychev expansion of the propagator requires 2NgNc operations in 
addition to Arc Hamiltonian operations to evaluate the terms of Eq. (10) using 
Eq. (12). This technique of integration in time is very precise in comparison with 
other schemes 3 because the Chebeychev polynomials are exponentially conver- 
gent on any finite interval [4]. 

3 For example, finite differencing in time. 
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3.4. 3-D implementation considerations 

Although there is little conceptual difference between the 2-D and the 3-D 
implementation of these techniques, there is a physical constraint of  the current 
generation of  CMs which is relevant. That  is, there are at most  216= 65536 
processors in each machine. This means that if we wish to work on a 
128 x 128 x 128 = 221 grid - it is impossible to allocate one processor to each 
grid point. In our 3-D implementation, which is in progress, one dimension of 
the grid is on processor and the other two dimensions are formed by the 
processor grid - as illustrated in Fig. 2. In this figure, the X and Y axes form 
processor grid Pi: and the array elements Ai:k reside on the processor P~: Vk. 
Because there is not an array of processors along the serial Z - a x i s -  it might 
seem that the kinetic energy calculation will scale as n (finite differences) or 
N log2 N (FFT).  However, since the calculations along the Z-axis are executed 
concurrently for all values of  X and Y, we are again able to evenly distribute the 
Z-axis operations among all of  the processors. In addition, all Z-axis operations 
are done on a part  of  the grid which is local to a single processor. This yields an 
additional speedup by avoiding inter-processor communication. Thus, not only 
are the 3-D implementations of  these algorithms still optimal but our " lack" of  
processors is somewhat compensated for by this on-processor/off-processor 
speed trade-off. 

4. Conclusions 

In summary,  almost every computational step of these grid algorithms may be 
executed concurrently for each grid site. Those steps which cannot be executed 
concurrently are implemented using optimal parallel algorithms. The speedup for 
massively parallel over serial is proportional  to the number of  processors for any 
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Estimate of machine cycles used in the various propagation schemes - 2D 

Hamiltonian $ Time--, Second-Order Difference Chebeychev expansion 

Fourier transform Serial 5Ng + 20N~ log 2 N a 5NcNg + 20NcN] log2N a 

Parallel 5 - g + 20 log 2 Na 5N c + 20N c log 2 Na Np 

Finite difference Serial 8Ng 8NcNg 

Parallel 8 Ng 8N~ Ng 
N, N~ 

Ua 
U~ (=Uo × Uo) 
P 

NI, (=P x P) 
Nc 

Number of grid points per axis 
Number of total points on grid 
Number of processors per axis 
Total number of processors 
Number of terms in Chebeychev expansion 

Table 2. Table of computational requirements: Projected 3D implementation 

Estimate of machine cycles used in the various propagation schemes - 3D 

Hamiltonian ~, Time ~ Second-Order Difference Chebeychev expansion 

Fourier transform Serial 5Ng + 30N 3 log 2 N,~ 5NcNg + 30N~N 3 log 2 N a 

Ng Ng 
Parallel 5 Np-- + 30N~ log 2 Na 5N~ ~ + 30NcN,, log 2 N a 

Serial 8Ng 8NcNg 

Parallel 8 Ng 8Ne Ng 
Up Np 

Finite difference 

U~ 
Xe (=N. x No) 
P 
% (=.e xp) 
Nc 

Number of grid points per axis 
Number of total points on grid 
Number of processors per axis 
Total number of processors 
Number of terms in Chebeychev expansion 

combination of techniques reviewed in this section. The comparison is summa- 
rized in Tables 1 and 2 for the 2-D and the 3-D case, respectively. To reiterate, 
although the solution of the 2-D TDSE has become routine, this work lays the 
groundwork for making the solution of the 3-D TDSE routine by using the 
massively parallel architectures as they emerge. 
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